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Orientational Fluctuations and Pseudo-Casimir
Force in Confined Nematic Liquid Crystals

S ZUMER™, A. SARLAH?, P. ZIHERL"" and R. PODGORNIK®

aDepartment of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana,
Slovenia and b). Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Our theoretical studies of fluctuations in the vicinity of phase and structural transitions and
the fluctuation-induced force in two model confined nematic liquid crystals are briefly
reviewed. We focus on the paranematic phase characterized by substrate-stabilized wetting
layer and on nematic films frustrated by competing surface fields. Depending on temperature,
anchoring strengths, and frustration, ‘he fluctuation-induced force can be either short- or
long-range, either attractive or repulsive, and it exhibits a pretransitional increase.

Keywords: confined liquid crystals; orientational fluctuations; fluctuation-induced force

INTRODUCTION

In the past decades, the use of microconfined liquid crystals in electro-optical
applications has boosted the interest in the research of liquid-crystalline systems
with high surface-to-volume ratio. In such systems, liquid-crystalline ordering is
often assumed to be strongly distorted due to frustrating effects of the confining
substrates, although in many cases this assumption has been found to be too
naive.l12] However, a weak distortion of the ordering does not automatically
imply that the structural force induced by the liquid crystal is weak too because
in this regime the fluctuation-mediated pseudo-Casimir contribution to the force

can be rather strung.i"‘] In the past few years the equilibrium structures in highly

B3
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frustrated geometries have been studied in detail,[¥) whereas lately much efforts
have concentrated on collective fluctuations and the fluctuation-induced force in
these systems.[5-19]
hmhppﬂwﬁu;hﬁmufummnudmufmmﬂm-
tmmmnmﬂhrmmmmmnﬁnedmummthmﬂtﬁngud
anchoring conditions."~% In the next Section the model system and theoretical
background are described. Then we address the wetting- and frustration-induced
effects on fluctuations and pseudo-Casimir forces. In the last Section we interpret

the rmﬂuuflrmentﬂpeﬁmennl:tudyoftheupinoduldemﬁqintumuf
the fluctuation-induced force.1!]

THEORETICAL BACKGROUND

Microconfined liquid-crystalline systems are trapped in a variety of host materials
characterized by curved, irregular, or even fractal internal geometry. Neverthe-
less, the confining geometries all share a common feature: the curved boundary
and/or the antagonistic boundary conditions result in frustration which leads tof
a number of transitions between the equilibrium structures, the control variable
being either temperature or the size of the system. Although the behavior of
these systems can be very complex, the basic physics of the confinement-induced
frustration can be modeled by the so-called hybrid nematic cell — a nematic
liquid crystal film sandwiched between two parallel substrates inducing uniaxial
nematic ordering but characterized by different wetting and anchoring properties.

To cover all aspects of the ordering, the nematic ordering is described by a
tensorial order parameter. In the one-elatic-constant approximation, the associ-
ated Landau-de Gennes free energy density reads

;=%{g’laun‘-zﬁuo’ﬂtrﬂ’]’]+vaivu}, (1)

where L is the elastic constant and §y = (27CL/B?)'/? ~ 10 nm is the nematic
correlation length at the bulk nematic-isotropic phase transition temperature
Ty, with B and C as standard Landau expansion coefficients. '] @ is the reduced
temperature such that § = 0 corresponds to the supercooling limit and 6 = 1 to
Ty, and the order parameter tensor Q is scaled by the degree of the nematic
order at Tyl The surface part of the free energy density is described by the
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tensorial a.nalog of the Rapini-Papoular model,

Is. = 3x; L (Q-Qs)?6(z - 2) . (2)

Here )\'s are the so-called extrapolation lengths which control the strength of the
anchoring. Short extrapolation length, A; —+ 0, corresponds to infinitely strong
anchoring, and )\; — oo corresponds to infinitely weak anchoring. Qs, is the
preferred value of the tensor order parameter on the i-th substrate; the substrates
are located at z; = 0 or z; = d. In such a model, the surface interaction controls
both the orientation of the nematic director and the degree of nematic order.
Deep in the nematic phase, the tensorial Landau-de Gennes description can be
replaced by the director picture and Frank elastic formalism consisting of splay,
bend, and twist deformation of the director field.'"

Within the mean-field approximation, the equilibrium configuration of the
system is determined by the minimum of the free energy. Usually, the thermal
fluctuations of the order parameter can be assumed small, and the free energy
of fluctuations can be considered a correction to the mean-field free energy. In
such a case, the fluctuations of liquid-crystalline order are described consistently
by harmonic Hamiltonian of the form

H[b] = % {f (08 +€27) av + Z;:‘;A fb’ds } (3)
i=

where b stands for any of the five independent fluctuating degrees of freedom of
the tensor order parameter (order parameter, biaxial, and director modes)*) and
£ is a generalized correlation length characteristic of a particular type of fluctu-
ations. In the case of uniform order parameter tensor the relevant temperature-
dependent correlation lengths can be easily identified. In the nematic phase the
order parameter fluctuations are characterized by

112

Eno=Eo E (1+1- 8/9) /1 - B&fﬂ]‘ | @)

The correlation length of biaxial fluctuations reads

tv=t |7 (1+V1- Bﬂf‘i)]_m . (5)

whereas the correlation length of the director modes is infinite:

6
ENg — 00 . (6)




(£/60)?

The same Hamiltonian also describes fluctuations in the isotropic phase, where
all five modes are degenerate and their correlation length is given by

€1 =072, (7)

The temperature variation of correlation lengths is plotted in Fig. 1.

Structural force

In planar-geometry, the structural force between the substrates is defined by
aF

whmFi:lthetotal&umugofthenyﬂeminquuthumddhthenpuuion
between the substrates. A:mtedtbon,thetmd&umnindudutham—
ﬁeldp:ﬂlndthe&uenetgdﬂuctutinm;thch:urisgimby

Fcas = —k;Tln( Db erp{—H[b]fkgT}) ‘ (9)

where kg is the Boltzmann constant and T is the temperature. (14

chn discussing structural forces in confined liquid crystals one should bear
in mind that there are two sources of the mean-field interaction. Elastic de-
fnmtiumu{thedirmﬂelduuulbng-rmgehmeinthemﬁcphm,
whereas miuion:n{thcdegruofnematicordermdhh:iﬂityruult in short-
ra.ngefomtbothinnemtitmdinimtmpicphm, In both phases, due to the
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restricted geometry the spectrum of fluctuations differs from the bulk spectrum,
which results in additional fluctuation-induced force. Depending on the bound-
ary conditions,®l the fluctuation-induced interaction can be either repulsive or
attractive, and its magnitude depends strongly on the surface interaction. In
general, the sign of the pseudo-Casimir interaction is determined by the type of
the boundary conditions, provided that the system is not subjected to electric
or magnetic field. Using Eqn. (3) one finds b(z = 0,d) = (A/d) ¥/(z = 0,d),
where V' = db/dz. The fluctuation modes constrained by strong (A2 < d) or
weak (A;2 >» d) anchoring at both substrates lead to an attractive force. In a
mathematical language this corresponds to Dirichlet, b(z = 0) = b(z = d) = 0,
or Neumann, b'(z = 0) = ¥'(z = d) = 0, boundary conditions at both substrates,
respectively. In contrast the asymmetric situation with one surface enforcing a
strong anchoring and the other a weak anchoring yields a repulsive force (mixed
boundary conditions). (5l

In the following Sections the physics of fluctuations in the model system and
the corresponding pseudo-Casimir force will be discussed briefly; the details of
the calculation techniques have been described elsewhere.[7-19]

HETEROPHASE SYSTEM: NEMATIC WETTING IN ISOTROPIC PHASE

A simple example of a heterophase liquid-crystalline system is a paranematic
film at temperatures slightly above the nematic-isotropic transition. The term
paranematic phase is used for the state where surface or even electromagnetic
fields induce partial nematic order, so that the liquid-crystalline ordering within
a thin wetting layer is nematic rather than isotropic. In a semi-infinite sample
the thickness of the wetting layer | diverges on approaching the nematic-isotropic
phase transition as long as the surface coupling is strong enough (the so-called
complete wetting regime).|'l Thus the paranematic system is in a heterophase
state only very close to Ty when | » {n, ({x,o being the measure for the
thickness of the interfacial area). The heterophase state becomes energetically
unfavorable when [ approaches d/2, which results in the transition to nematic
state.

The collective dynamics of a heterophase system is characterized by two soft
order parameter modes localized at the phase boundaries (Fig. 2). The modes
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FIGURE 2 Mean-field degree of the nematic order (solid line) and lowest
order parameter (dashed line), director (dotted line) and biaxial (dash-dotted
line) modes in the paranematic phase just above the nematic-isotropic phase
transition temperature. The soft order parameter mode is localized at the
phase boundary, the lowest director mode is confined to the wetting layers,

whereas the lowest biaxial mode is expelled from the wetti layers P
100, 6 = 1.00001, A = 0] ing layers. [d/¢o =

correspond to fluctuations of thickness and position of the central isotropic part
of the system; in a thick enough film (d < £x.,), the two modes are practically
degenerate. The lowest director fluctuation modes, which are confined to the
wetting layers, also exhibit critical slowdown on approaching the clearing point.
On the other hand, the biaxial modes are energetically cheaper in the isotropic
phase and thus expelled from the wetting layers.

An insight into the nature of the dominant fluctuation modes in the parane-
matic phase will help us to understand the fluctuation-induced force in this sys-
tem, which turns out to consist of two contributions: (i) the interaction between
the substrates and the phase boundaries and (ii) the interaction between the two
phase boundaries. [l

Interaction between solid substrate and phase boundary

The interaction between the solid substrate and phase boundary consists of three
contributions corresponding to three non-degenerated fluctuation modes. The
fluctuations of the degree of order give rise to a short-range repulsion between
the substrate and the phase boundary proportional to exp(—2l/£x,), where |
is the thickness of the wetting layer. The short range of the interaction is a
consequence of finite correlations of the order parameter fluctuations in both
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nematic and isotropic phase. The repulsion between the substrate and the phase
boundary can be understood in terms of boundary conditions. The anchoring
at the substrates is strong, whereas the maxima of the order fluctuation modes
at the phase boundaries indicate that these modes experience effectively weak
“anchoring” conditions. Because of the dissimilarity of the boundary conditions
the interaction due to fluctuation of the degree of order is repulsive. A similar
argument applies to biaxial fluctuations. Here weak “anchoring” condition at
the phase boundary can be understood as a consequence of the fact that biaxial
fluctuations are much more favorable in the isotropic phase than in the nematic
phase. The resulting repulsive interaction is proportional to exp(—2[/{ns) and
thus much weaker than the order parameter modes’ contribution because the
correlation length of biaxial fluctuations is shorter than the correlation length of
order parameter fluctuations. The main contribution to the interaction between
the solid substrate and the phase boundary is induced by the director fluctuations,
which are characterized by an infinite correlation length in the nematic phase.
The leading term of this interaction reads'”)

ksTS5((3)
o - (10)

where ( is the Riemann zeta function. This long-range interaction is attractive
which can again be interpreted in terms of (dis)similarity of boundary conditions.
In the isotropic phase, the director fluctuations are very “hard” compared to the
ones in the nematic phase (£y 4  £;,4). Therefore the lowest normal modes are
actually confined to the nematic surface layer.[”l The effective boundary condition
at the phase boundary is very similar to strong anchoring at the solid substrate,
and the force induced by director fluctuations is attractive.

Interaction between phase boundaries

The interaction between the two phase boundaries gives rise to an attractive
fluctuation-induced force (identical boundary conditions) which is proportional
to exp (—2(d — 21)/€;). Except in the vicinity of the metastability limit of the
paranematic phase, the distance between the substrate and the phase boundary is
much smaller than the distance between the two boundaries, and the interaction
between the phase boundaries is very weak. It should be also stressed that the
range of the pseudo-Casimir interaction between the phase boundaries is half of
the range of the mean-field interaction. Thus for [ < d the attractive mean-field
contribution is dominant and proportional to exp (—(d - 2)/§;). In very thin
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FIGURE 3 Fluctuation-induced force in the paranematic phase compared to
the_mun—ﬁdd force as a function of temperature for d/£, = 8.5, 9, 10, and 12
(solid line, metastable state), whereas d/§o — oo (dashed line; stable state).
In general, the pseudo-Casimir force is controlled by fluctuations within the
wetting layer (b) and thus repulsive. However, in the immediate vicinity of the
metastability limit the force becomes dominated by the attraction between
the phase boundaries (a).

cells (close to the metastability limit, d/§ ~ 10) the distance between the two
phase boundaries becomes comparable to the thickness of the wetting layers and
at certain point the paranematic state becomes unstable. In this range the at-

tractive fluctuation-induced interaction between the phase boundaries becomes
dominant.

Effective int b 4 lid sul

The effective pseudo-Casimir force between the two solid substrates is a superpo-
sition of the two contributions discussed above. In the range of stable paranematic
phase (6 > 1, | < d) the fluctuation-induced force between the two substrates is
governed by the interaction between the solid substrate and the phase boundary,
which is not directly measurable. In fact, it is mediated by the mean-field interac-
tion which dominates the interaction between the two phase boundaries. Formally
this enters via functional dependence of the wetting layer thickness [ on the sample
thickness d. Within the mean-field description, 81/8d = —const. x exp(~-d/€),"®
8o that the leading term in the substrate-to-substrate fluctuation-induced force

_kgTS((3) A

Foas = -5 5d & exp(—d/&r) (11)

is repulsive and short-range. Its range, £;, is identical to the range of the mean-
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field force, whereas its magnitude is smaller but comparable to the magnitude of
the mean-field attraction originating from the inhomogeneity of the order between
the phase boundaries (Fig. 3). The two forces have the same range, so that the
mean-field force is proportionally diminished by fluctuation contribution. The
mwﬂﬁumnhihuthudluﬂuﬂhmmbtpﬁhmmm:implynmd
t;kingintnmuﬂthu&ctthﬂpuudﬁﬂuimir attraction reduces the thickness
of the wetting layers. Therﬂultin;incruuofthedhumbﬂmthﬁtw
phase boundaries consequently reduces the effective interaction between the two
substrates. In very thin films (d/€o ~ 10) close to the limit of the metastable
paranematic region the situation is quite different because the pseudo-Casimir
interaction between the phase boundaries becomes more important. Eventually,
this interaction becomes dominant and at the metastability limit, the effective
substrate-to-substrate interaction exhibits a attractive singularity (Fig. 3).M

ANCHORING-INDUCED FRUSTRATION: HYBRID NEMATIC CELL

In a hybrid nematic cell the confining substrates are characterized by mismatched
easy axes; often one easy axis is homeotropic and the other is planar. Usually, dis-
similar substrates differ in the anchoring strength as well. The competing surface
interactions can result in several structures. In the vicinity of the clearing point,
the equilibrium ordering in thin cells is biaxial and highly inhomogeneous.(! On
the other hand, deep in the nematic phase and for samples thicker than few £x,'s
the degree of nematic order is almost uniform and uniaxial, whereas the director
field can be either bent (thick cells) or uniform (thin cells). In films thinner than
d. = |Ap — Ag| the uniform director structure is stable, whereas for d > d. the
director field within the cell is distorted (A\p and Ap are the extrapolation lengths
at the planar and the homeotropic substrate, respectively). In this review, we
limit the analysis to films thick enough for the ordering to be consistently de-
scribed by the director. We assume that the homeotropic anchoring is stronger
than the planar anchoring so that the uniform structure is homeotropic.

In the following, we focus on the simplest ordered structure in the hybrid
cell — the uniform structure. Its mean-field free energy consists of the energetic
penalty for the violated boundary conditions at the planar substrate

K. ..
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which does not depend of the cell thickness and hence the mean-field force between
the substrates is zero. In other words, in the uniform configuration the structural
force is induced solely by fluctuations of the liquid-crystalline ordering.

The structural transition from uniform to distorted configuration is domi-
nated by director fluctuations. Within the harmonic approximation Eqn. (3)
the free energy of the two director modes can be determined by calculating the
corresponding partition function [Eqn. (9)]. A detailed discussion of the methods
of calculation of the partition function and the pseudo-Casimir force is beyond
the scope of this paper. We shall only quote the analytical approximations and
numerical results; a detailed analysis of the problem is discussed elsewhere.[*] To
keep the analytical approximations as transparent as possible, we restrict our
discussion to strong anchoring at the homeotropic substrate, i.e., Ay — 0 and
d. = Ap. At small thicknesses, d/d. < 1, the fluctuation-induced force is given

by
In2

Favee(d/de € 1) = "‘”2:5 [ﬁ] + o] (13)
where ( is the Riemann zeta function. The first term is the d~3 repulsion typical
for mixed boundary conditions. The second term is a correction originating from
a weak but finite destabilizing surface field at the planar substrate. Since this
substrate promotes fluctuations, it enhances the force, i.e., it gives rise to an extra
repulsion. In the case of strong anchoring the pseudo-Casimir force is repulsive
at all thicknesses up to d;. On increasing the distance, the d~* repulsion [Eqn.
(13)] gradually fades out, levels off in the vicinity of the structural transition to
the bent structure and eventually diverges as d/d. — 1 [Eqn. (14) and Fig. 4]

Fauadfde +1) = ’;%rf In (3(1 - d/dg))™" . (14)
In real hybrid systems with both Ap and Ay > 0, the fluctuation-induced force is
attractive at small d/d,’s, then it becomes repulsive and reaches a local maximum
before the pretransitional singularity. If the two anchoring strengths are not very
different, the repulsive mid-range maximum is absent and the attractive regime
extends almost right up to the structural transition. Although this behavior may
seem surprising at first, it can be easily understood in terms of (dis)similarity of
boundary conditions. At very small thicknesses (d/d. < 1) both extrapolation
lengths are larger than the thickness of the cell, which means that both surface
interactions are effectively weak. This means that the fluctuations experience
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d/d,

(a) (b)

FIGURE 4 Fluctuation induced force in a hybrid cell as a function of the
reduced thickness for various anchorings; Ay /Ap = 0.01, 0.06, 0.1, and 0.5.
At small distances the fluctuation-induced force is attractive, Ap > Ay > d
[inset (a)], then it becomes repulsive, Ap > d > Ay [inset (b)), and diverges
at the transition (d = d. = Ap — Ay).

effectively weak anchoring boundary conditions at both substrates, resulting in
an attractive fluctuation-induced interaction. On increasing the distance, the
fluctuation-induced force becomes repulsive when the homeotropic extrapolation
length becomes smaller than the cell thickness: for Ay < d < Ap, the homeotropic
anchoring is strong whereas the planar anchoring is weak (Fig. 4).

The results of the numerical analysis confirm the analytically predicted sin-
gularity of the fluctuation-induced force at the critical thickness. However, we
stress that in the vicinity of the structural transition the anharmonic fluctuations
may also play an important role. Nevertheless, the higher-order corrections are
expected not to modify the divergent pretransitional behavior qualitatively.(®!

HAS THE PSEUDO-CASIMIR FORCE BEEN SEEN YET?

The main problem in observing the pseudo-Casimir force is its small magnitude
compared to the mean-field force. Furthermore, the pseudo-Casimir force is ex-
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pected to be important at small distances where the most common experimental
geometry — sandwich-type planar cell — is usually no longer well-defined. How-
ever, one can produce 8 much more appropriate sample by replacing one of the
solid substrates by a free surface. At thicknesses where 8F . /8d > 0 (where
Fiotal is the sum of van der Waals and structural forces) such a film, prepared
by spreading the liquid crystal over the substrate, disintegrates into an array
of droplets and dry patches in a process called spinodal dewetting.!\"~19 The
characteristic dewetting time and the size of the droplets are directly related to
the structural force,'” so that one can map the force by varying the initial film
thickness and measuring the characteristic time and lengthscale of dewetting. We
have used the results presented above to reanalyze a recent experimental study of
spinodal dewetting in 5CB."" and we have shown that the fluctuation-induced
force together with van der Waals force can provide a consistent interpretation
of the observed behavior.I'!] This implies that the experiment in question can be
regarded as a first evidence of the pseudo-Casimir force in liquid crystals.

CONCLUSIONS

In this review, we summarized the results of our recent theoretical studies of
fluctuations in two confined liquid-crystalline systems: the paranematic phase
and the hybrid nematic cell. We showed that in these geometries, the behav-
ior of fluctuations and the fluctuation-driven phenomena are governed by either
stabilizing or destabilizing effects of the confinement. We analyzed the pseudo-
Casimir force in both systems and we demonstrated that its confinement-induced
features are very prominent, especially in the vicinity of phase and structural
transitions. Some of the effects discussed may well have been observed indirectly
in a recent study of spinodal dewetting of 5CB on a silicon substrate.
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